

Geometric deep learning for business classification

Henry Kenlay, Xiaowen Dong, Stephen Roberts

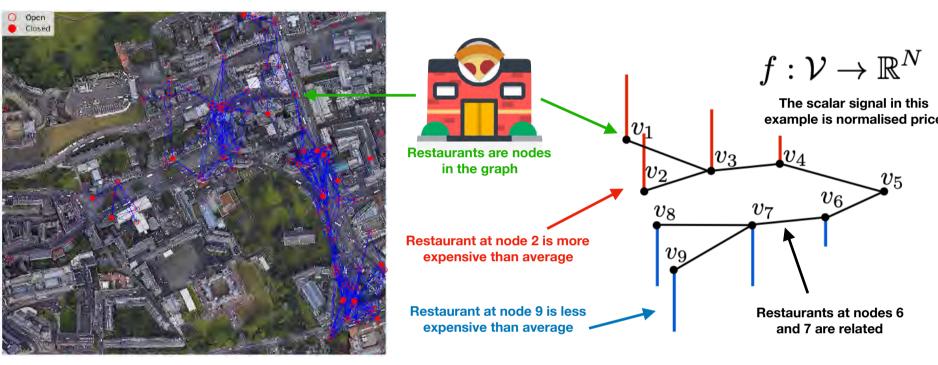
Introduction

Graph signal processing

- Processing of signals defined on vertex set of weighted and undirected graphs **Geometric deep learning**
- Deep learning on data residing on graphs
- Spectral approaches take inspiration from graph signal processing

Business classification

- Given attributes of a business and a graph topology relating businesses in Edinburgh, can we predict if the restaurant has closed down?
- We use a graph convolutional neural network for classification hopefully exploiting pairwise relationships between businesses



Graph CNN framework

Filtering in the graph spectral domain

- Eigenvalue decomposition is $\mathcal{O}(n^3)$
- Change of basis is also $\mathcal{O}(n^3)$
- Can approximate filtering using Chebyshev polynomials [1]
- Further simplification by considering polynomials of order one [2]

Propagation rule:

Layer properties - CNN correspondence

- Signal value on node i in layer of the value at i as well as that at i's 1-hop neighbours in layer K - localised filters
- Weight sharing across hodes filters independent of input size
- Sparse multiplications give low computational cost

Graph signal processing and convolution on graphs

Laplace operator:

Eigenfunction basis:

Classical FT:

$$\hat{f}(\omega) = \langle e^{i\omega x}, f \rangle = \int (e^{i\omega x})^* f(x) dx$$

$$f(x) = \frac{1}{2\pi} \int \hat{f}(\omega) e^{i\omega x} d\omega$$

Classical convolution:

$$(f * h)(x) = \int f(\tau)h(x - \tau)d\tau$$
$$= \frac{1}{2\pi} \int \hat{f}(\omega)\hat{h}(\omega)e^{i\omega x}d\omega$$

L = D - WGraph Laplacian:

Eigenvector basis:

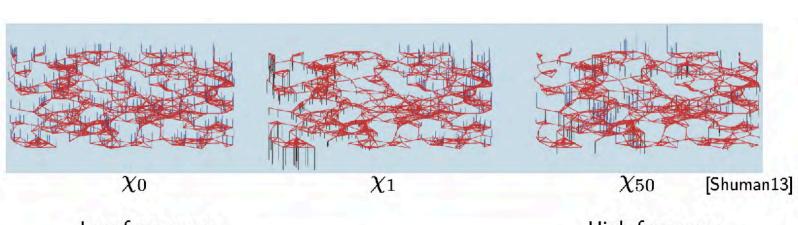
Graph FT:

$$\hat{f}(\ell) = \langle \chi_{\ell}, f \rangle = \sum_{i=1}^{N} \chi_{\ell}(i)^* f(i)$$

$$f(i) = \sum_{\ell=1}^{N} \hat{f}(\ell) \chi_{\ell}(i)$$

Graph convolution:

$$(f*h)(i) = \sum_{\ell=1}^{N} \hat{f}(\ell)\hat{h}(\ell)\chi_{\ell}(i)$$



High frequency Low frequency $\chi_0^T L \chi_0 = \lambda_0 = 0$ $\chi_{50}^T L \chi_{50} = \lambda_{50}$

Classification problem

Problem set up

- Yelp dataset multimodal data about businesses
- Each restaurant is represented by a node in the graph with edges capturing relationship between businesses
- Each restaurant has an associated feature vector
- Label is if the restaurant is still operating (binary classification)
- Elastic net model used to select subset of features

(d) Kernel

(a) Nodes (b) As the crow flys (c) Jaccard

Importance of graph topology

- Edges provide a relational inductive bias
- Using no edges is equivalent to a multilayer perceptron
- We experiment with different ways to generate edge weights:
- Randomly
- Kernel-based methods (e.g., Gaussian RBF kernel)
- Restaurant distance
- Reviewer data Jaccard index between two sets of reviewers (one for each restaurant)

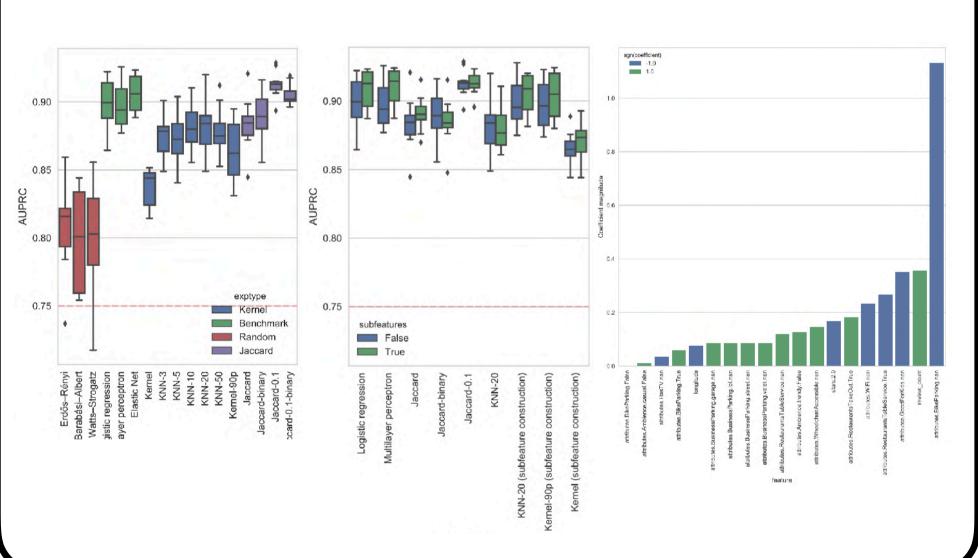
Results

Results

- Benchmarks were competitive
- Review data gave slight advantage when using full set of features
- Random graphs were detrimental to performance

Feature selection

- Using elastic net selected features improved performance for many approaches
- The benefit is less significant in graph convolutional neural networks Thresholding edges
- Thresholding the Jaccard graph improved performance despite disconnecting the graph and isolating 10.6% of the nodes



Discussion

Graph constructions

- Social data
- Statistical methods

Longitudinal prediction

Can we predict business closure in the future?

Other frameworks

Explore alternative graph convolutional neural network frameworks

Theoretical approach to the importance of graph topology

Theoretical bound on the output given a small perturbation of the input graph topology

Contact: <u>kenlay@robots.ox.ac.uk</u>

[1] Defferrard, Michaël, Xavier Bresson, and Pierre Vandergheynst. "Convolutional neural networks on graphs with fast localized spectral filtering." Advances in Neural Information Processing Systems. 2016. [2] Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).