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Table 1: Do the parametrizations allow for feature learning
and uncertainty (via ensembling) in the infinite width limit?

Parametrization Feature Learning Uncertainty

SP (aka Kaiming normal [1]) ×
√

µP [2]
√

×
OURS

√ √

Key Definitions

The parametrization (incl. initialization scheme and learn-
ing rate) determines whether we can achieve feature learn-
ing and our learnt functions is deterministic. We define
feature learning as

Definition 1. Let xl be the network features, i.e. pre-
activation layer outputs. Then, feature learning occurs if xl

have an update of Θ(1),

where a vector v is O(na) iff
√
||v||2/n fluctuates on the

order of O(na), where n is the number of units in a hidden
layer.

A function f is deterministic iff

Definition 2. limn→∞ var(ft) → 0, where n is the number of
units in a hidden layer.

Further, abc-parametrization [2] allows us to create an ef-
fective per-layer learning rate. We adapt the definition
from [2], and define abc-parametrization as

Definition 3. LetW l be a weight matrix in a L-layer network.
Then, W l := n−alwl, where wl ∼ N(0, n−2bl) is a trainable
parameter. The third parameter cl is the learning rate, defined
as γn−cl , where γ is a constant.

Methods

Table 2: abc-parametrization of standard parametrization
(SP), maximal update parametrization (µP) and our para-
metrization.
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To prevent a layer output from blowing up, parametriza-
tions downscale weights (as in µP) or learning rates (as
in SP). Consequentially, we either do not permit feature
learning or learn a deterministic function (and thereby
forego uncertainty via ensembling), as summarized in
Table 1.

We propose an alternative parametrization that is able to
capture feature learning and avoids learning a determin-
istic function. Specifically,
• in general, use µP to ensure maximal feature and func-
tion updates during training,

• contrary to µP, do not downscale the weights in the final
layer (i.e., use aL+1 = 1/2), to avoid learning a determ-
inistic function,

• modify the backward pass: set Wt by ∆Wt = Wt −W0,
and

• use a learning rate of γn−1 for the final layer.
The last two alterations prevent the network from blowing
up during training.

Results

Figure 1: Feature learning: lo-
gistic regression performance
using the top 15 principal com-
ponents of features. 95% con-
fidence intervals is over 10
seeds.

Figure 2: Uncertainty Estim-
ation. Difference in predictive
entropy for in-distribution data
(MNIST) vs out-of-distribution
data (FashionMNIST).

Our preliminary results suggest our parametrization

• permits feature learning as width increases, comparat-
ively well to µPand contrary to SP which observes a dip
in performance.

• is able to obtain better uncertainty estimation via en-
sembling than the other parametrizations.
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