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Table 1: Do the parametrizations allow for feature learning
and uncertainty (via ensembling) in the infinite width limit?

Parametrization Feature Learning  Uncertainty

SP (aka Kaiming normal [1]) X V4
1P [2] v X
OURS VA Vi

Key Definitions

The parametrization (incl. initialization scheme and learn-
ing rate) determines whether we can achieve feature learn-
ing and our learnt functions is deterministic. We define
feature learning as

Definition 1. Let xz; be the network features, ie. pre-
activation layer outputs. Then, feature learning occurs if x;
have an update of ©(1),

where a vector v is O(n?) iff \/||v||?/n fluctuates on the
order of O(n®), where n is the number of units in a hidden
layer.

A function f is deterministic iff

Definition 2. lim,,_, ., var(f;) — 0, where n is the number of
units in a hidden layer.

Further, abc-parametrization [2] allows us to create an ef-
fective per-layer learning rate. We adapt the definition
from [2], and define abc-parametrization as

Definition 3. Let W' be a weight matrix in a L-layer network.
Then, W' := n=%w,, where w; ~ N(0,n~2%) is a trainable
parameter. The third parameter c; is the learning rate, defined
as yn~—°, where -y is a constant.

Table 2: abc-parametrization of standard parametrization
(SP), maximal update parametrization (4P) and our para-
metrization.
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To prevent a layer output from blowing up, parametriza-
tions downscale weights (as in uP) or learning rates (as
in SP). Consequentially, we either do not permit feature
learning or learn a deterministic function (and thereby
forego uncertainty via ensembling), as summarized in
Table 1.

We propose an alternative parametrization that is able to

capture feature learning and avoids learning a determin-

istic function. Specifically,

* in general, use P to ensure maximal feature and func-
tion updates during training,

 contrary to uP, do not downscale the weights in the final
layer (i.e., use ar+1 = 1/2), to avoid learning a determ-
inistic function,

» modify the backward pass: set W; by AW, = W, — W,
and

* use a learning rate of yn~! for the final layer.

The last two alterations prevent the network from blowing

up during training.
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Figure 1: Feature learning: lo- Figure 2: Uncertainty Estim-
gistic regression performance ation. Difference in predictive
using the top 15 principal com- entropy for in-distribution data
ponents of features. 95% con- (MNIST) vs out-of-distribution
fidence intervals is over 10 data (FashionMNIST).

seeds.

Our preliminary results suggest our parametrization

¢ permits feature learning as width increases, comparat-
ively well to pPand contrary to SP which observes a dip
in performance.

« is able to obtain better uncertainty estimation via en-
sembling than the other parametrizations.
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